(x)=8x^2+3x-96

Simple and best practice solution for (x)=8x^2+3x-96 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x)=8x^2+3x-96 equation:



(x)=8x^2+3x-96
We move all terms to the left:
(x)-(8x^2+3x-96)=0
We get rid of parentheses
-8x^2+x-3x+96=0
We add all the numbers together, and all the variables
-8x^2-2x+96=0
a = -8; b = -2; c = +96;
Δ = b2-4ac
Δ = -22-4·(-8)·96
Δ = 3076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3076}=\sqrt{4*769}=\sqrt{4}*\sqrt{769}=2\sqrt{769}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{769}}{2*-8}=\frac{2-2\sqrt{769}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{769}}{2*-8}=\frac{2+2\sqrt{769}}{-16} $

See similar equations:

| -2x-5x+4=2x+12-x | | (x-24)/5=4 | | 65+17x-70=180 | | 32d=-192 | | 4/8x+6/8x=7/8x | | 4+36=10x | | 7/4x=4/8x+6/8x | | 56+3x+x=180 | | 2x+7+3x+3+30=180 | | w=5.9=7.761 | | d−559=-242 | | w+5.9=294 | | 0.12t=9 | | h−172=573 | | (t+10)^2+(t+20)^2=t^2 | | 5=u^2 | | g+22=95 | | b+-755=133 | | (10+t)+(20+t)=t | | 3(z-9)=3 | | 99=r+38 | | t+10+t+20=t | | x=-1,7,-7 | | 35x+50=35x+100 | | 5x-1=7x-4 | | −4(2d−2)=−56 | | 5x+2x=59 | | -6r+12-8r=12 | | m/3.25=64 | | 5x+7x-40=180 | | x^2-10x=299 | | f/8−20=−22 |

Equations solver categories